
Effect of the Subdivision Strategy on 
Convergence and Efficiency of s&me Global 
Optimization Algorithms 

HOANG TUY 
Institute of Mathematics, Hanoi, Vietnam 

(Received: 3 May 1990; accepted: 2 November 1990) 

Abstract. We investigate subdivision strategies that can improve the convergence and efficiency of 
some branch and bound algorithms of global optimization. In particular, a general class of so called 
weakly exhaustive simplicial subdivision processes is introduced that subsumes all previously known 
radial exhaustive processes. This result provides the basis for constructing flexible subdivision 
strategies that can be adapted to take advantage of various problem conditions. 
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1. Introduction 

Many global optimization algorithms of branch and bound type involve a subdivi- 
sion process which can be described by a tree. The root of this tree represents an 
initial simplex S,, and a path in the tree is a nested sequence of simplices 
so 3 * . .3 Sk 3 * * . such that Sk+1 is obtained via the radial subdivision of Sk with 
respect to some point wk E Sk (for the definition of radial subdivision, cf. [5]). 

Most often, the convergence and efficiency of the algorithm critically depend 
upon the subdivision strategy, i.e. the way of choosing the subdivision point wk. A 
fundamental question that arises here is under which conditions one has 

where 8(S) denotes the diameter, i.e. the length of the longest edge, of S. If this 
holds for every nested sequence generated by the subdivision process we say that 
the process is exhuustive. The interest of this concept stems from the fact that for 
many algorithms using certain standard bounding methods the consistency of the 
bounding operation and hence the convergence of the algorithm will be guaran- 
teed if the underlying subdivision process is exhaustive (see [9]). 

The most commonly used exhaustive subdivision process is the bisection in 
which each simplex is divided into two subsimplices by a hyperplane passing 
through the midpoint of a longest edge and all the vertices that are not incident to 
this edge (cf. [3] and [5]). Unfortunately, it has been observed that the conver- 
gence of algorithms based on bisection is too slow (cf. e.g. [2]). This deficiency is 
due to two reasons: 1) at each bisection the volume of a simplex diminishes just 
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by a half, so many bisections may be needed to get a sufficiently small subsimplex; 
2) the bisection is a “passive” strategy which does not take the problem 
conditions into account. Therefore, other exhaustive subdivision processes have 
been introduced (cf. [2], [ll], [12] an recently [8]). Computational experiments d 
reported in [2], [ll], [12], [4] 1 rave effectively confirmed the superiority of these 
flexible subdivision strategies compared to the bisection. 

However, even when realized by a flexible subdivision strategy, exhaustiveness 
is too strong a condition which may be costly to achieve in order to secure the 
convergence of a given algorithm. The aim of this paper is to present a weaker 
condition that, while sufficient for convergence, is much easier to realize practical- 
ly. Both from the computational and theoretical point of view, the subdivision 
processes realizing this condition are far more satisfactory than all exhaustive 
subdivision processes previously known. 

In the next section, we establish a very general condition of exhaustiveness 
which subsumes all the conditions earlier developed in [11] and [12]. On the basis 
of this general result, Section 3 introduces the concept of weak exhaustiveness 
which allows a great flexibility in realizing subdivision strategies able to accommo- 
date convergence with efficiency. Section 4 discusses the applications to conical 
and simplicial algorithms, providing substantial improvements. Finally, Section 5 
discusses some peculiarities of rectangular subdivisions, which are suited for 
separable problems. 

2. A General Condition for Exhaustiveness 

Let S = [s’, . . . , ~~1 be an (n - 1)-simplex in R” and let w be an arbitrary point of 
S: 

w = sipi , Ai20, ZAi=l, 

where the set J = {i.: Ai > 0} has at least two elements (i.e. w # .r’ Vi). For each 
j E .7 form the simplex S( j, W) whose vertex set is obtained from that of S by 
replacing s’ with w. Then the collection {S( j, w) : j E .J} constitutes a partition of 
S (see, e.g., [5]) which is called a rudiul subdivision of S with respect to W. 
Clearly, the bisection corresponds to the case where w is the midpoint of a longest 
edge of S. 

Now consider an infinite nested sequence of simplices 

s1 3 s2 3 . . .I Sk 3 . . . (4 

such that Sk+1 is obtained from Sk via a radial subdivision with respect to some 
wk E Sk. The question that arises is under which conditions this sequence is 
exhaustive, i.e. satisfies (l)? 

Foreachi=l,...,rzdenote 

8(i, S) = max{ ]]? - s’]] : j # i} , 

i.e., 6(i, S) is the maximal length of an edge of S incident to s’. 
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DEFINITION. Given an (n - 1)-simplex S = [s’, . . . , sn] and a constant p E 
(0,l) we say that a point w E S satisfies the p-ecce~&~&y co&&n in S if 

max{/]w-si]];i=l,...,n}<p8(S). 

A point w f~ S satisfies the p-dominance condition in S if 

w E conv{.+ : S(i, S) > pS(S)} . 

Let Sk = [P, . . . , ~‘~1, where it is agreed that when Sk+r is obtained from Sk by 
replacing s” with w’, then the new vertex of Sk+i receives the index i of the vertex 
of Sk that it replaces. 

THEOREM 1. Zf there exists a constant p E (0, 1) such that wk satis$es the 
p-eccentricity condition in Sk for every k, and satis$es the p-dominance condition 
in Sk for infinitely many k, then (1) holds. 

Proof. For simplicity denote 6k = a(Sk). Let kI < kz <. . . be the infinite 
subsequence formed by all k for which uk satisfies the p-dominance condition in 
Sk. We first show that, given any t, there exists k > t such that 

Since 0 < p < 1, it will then easily follow that Sk & 0. Colour every vertex of St 
“black” and colour “white” every vertex of a Sk with k > t which is not black. 
Clearly, if a vertex ski of a simplex Sk is white then ski = wh for some h, t 5 h -=c k, 
so that according to the p-eccentricity condition: 

S(i, Sk) = max{ ]] wh - Sk’]] : j # i} 

Zmax{]]wh - shj[/:j#i}5pSh5pSt. (4) 

Therefore, if for some k > t the simplex Sk has a white vertex incident to a longest 
edge ek, then Sk = ]]ek]] 5~~3~ and (3) holds. Suppose now that for all k > t, a 
longest edge ek of Sk has always two black endpoints, i.e. is an edge of St. Then, 
since the number of edges of St is finite, there is a fixed edge e of St such that 
ek = e for infinitely many k, hence Sk = ]]ek]] = ]]e]] for all sufficiently large k, say 
for all k 2 t’. Without loss of generality we can assume t’ = t, so that Sk = St for all 
k 2 t. Also we can assume that kI > t. By hypothesis the p-dominance condition 
is satisfied for k = kI. But, according to (4), any white vertex ski of Sk satisfies 
S(i, Sk) Z pSh = pSk, so that any vertex ski of Sk with S(i, Sk) > pSk must be black. 
Thus, for k = kI, wk belongs to a face Fk of Sk spanned by black vertices. Since 
S kl+ 1 is obtained from Sk1 by replacing a vertex of FkI by wkl, it follows that Skl+r 
has at least one black vertex less than Skl. Similarly, Sk2+r has at least one black 
vertex less than Sk*. And so on. Continuing in this way we will arrive at a tl such 
that St1 has no black vertex. This contradicts the assumption that any longest edge 
of Sk for k > t has black endpoints. Therefore, there exists k > t such that (3) 
holds. 0 
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REMARK. The Theorem still holds if instead of the p-eccentricity condition we 
only assume 

max{]]& - skq:j#ik}5p& (51 

where ik is the index of the vertex which is to be replaced by wk. Actually, only 
(5) was used in the above proof. 

COROLLARY 1. The bisection process is exhuustive. 
Proof. For each simplex S = [.sl, . . . , sn] denote by u(,s) the midpoint of a 

longest edge of S. It is known that u(S) satisfies the p-eccentricity condition in S 
with p = v’3/2 (cf. [S] or [5]). Furthermore, u(S) obviously satisfies the p- 
dominance condition for any p E (0,l). Therefore, if wk = u(Sk) for every k (i.e. 
if Sk+l is always obtained from Sk via a bisection) then the conditions of Theorem 
1 are fulfilled by any infinite nested sequence {Sk} generated by the subdivision 
process. tl 

COROLLARY 2. If there exists u constant p E (0,l) such thut for every k: 
(a) ~UX{ ]I wk - ski/j : i E Jk} 5 p8(Sk), 
(b) wk E conv{ski : i E Jk}, 

where Jk = {i : 8(i, Sk) > p6(Sk)}, then 8(Sk)+ 0 as k+ m. 
Proof. Condition (a) implies that max{ ]] w’ - ski]] : i = 1 , . . . , n} 5 p8(Sk), 

since for i @ Jk one has ]jwk - ski]/ 5 6(i, Sk) 5 p6(Sk). On the other hand (b) 
means that wk satisfies the p-dominance condition in Sk. Therefore, the condi- 
tions of Theorem 1 are fulfilled (with the p-dominance condition holding for uZZ 
and not only for infinitely many k). q 

A variant of this “balanced subdivision method” is to choose the subdivision point 
w(S) for each simplex S = [s’, . . . , So] in such a way that for some constant 
P E ~~,~~: 

w(S) = X,$s’ with ,$Z 0 , ZZAi = 1 

Ai>OG8(i,S)>p6(S); min{Ai:Ai>O}Zl-p. 

Indeed, it can be verified that the last inequality implies that ]I w(S) - si]] s pa(S) 
for all i with Ai > 0. 

Although the balanced method performs better than the bisection (cf. [ll]), it 
is still determined beforehand and does not vary adaptively in order to take 
advantage of the information gathered as the algorithm proceeds. 

3. Weakly Exhaustive Process 

One may wonder whether one of the conditions required in Theorem 1 can be 
dropped: 

(i) p-eccentricity for all k; 
(ii) p-dominance for infinitely many k. 
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Clearly, a sequence {Sk} may satisfy (i) while lim 8(Sk) > 0. For example, this is 
the case if for every k, w’ = centre of gravity of Sk and s’+‘,l = wk. The following 
counter example shows that condition (ii) alone is not sufficient either. 

Take any decreasing sequence of real numbers CYST J 1 and in R2 construct an 
infinite nested sequence of triangles (Sk} as follows. Let S0 be any triangle such 
that 11 bt,[j > a0 (bk denotes the second longest edge of Sk). Bisect S,, and let SI be 
the subtriangle of S0 that contains bO. Then as IV’ (the subdivision point of Sr) 
choose a point lying on an edge of SI other than b0 but so near to an endpoint of 
b,, that w1 determines with b,, a subtriangle of SI having at least two edges of 
length ~-a~ > cz2. Let S2 be this subtriangle of SI. Then, since 11 bzll > a2, the same 
process can be repeated with S2 in place of SO. Clearly the sequence {Sk} so 
constructed will have 8(Sk) 2 1 Vk, despite the fact that it involves infinitely many 
bisections (every &,, h = 0, 1, . . . , is bisected). 

Thus, even if, for infinitely many k, wk is the midpoint of a longest edge of Sk, 
it is not guaranteed that lim a(Sk) = 0. 

However, from Theorem 1 we can derive the following proposition which is of 
fundamental importance for our purpose. 

THEOREM 2. If the sequence {Sk} invoZves in@iteZy many bisections (i.e. for 
infinitely many k, say k E A, wk is the midpoint of a longest edge of Sk), then there 
exists a subsequence {k,,} C { 1,2, . . .}\A such that, as v + m,. we have: 

wkv+ w, skvi -9 si (i = 1, . . . , n), w E vert[s’, . . . , sE] , (6) 

(vert[s’, . . . , sn] denote the vertex set of the polytope which is the convex h&l of 
{sl, . . . , f}). 

Proof. From the hypothesis it can easily be seen that for every k EA the 
p-dominance condition holds for arbitrary p E (0,l) and the p-eccentricity condi- 
tion holds for p = I’3 /2. Therefore, if for some p E (0,l) the p-eccentricity 
condition holds for all sufficiently large k @ A, then by Theorem 1, 8(Sk)+ 0 and 
(6) h ld f t. o s a or tori. Consider now the case when for every p E (0,l) there are 
infinitely many k G A for which the p-eccentricity condition does not hold. That 
is, for every v there exists kV @ A, such that k,, > v and 

max{~/wk~-sk~i~~:i=l,...,n}>(l-l/~)8(SkV) (7) 

By taking a subsequence if necessary, we can assume that wkV+ w, skui* s’ 
(i=l,..., n), and 8(SkV)+ 8 = rnax{lls’ - sj[\ : i <j}. Then from (7) we have 

max{[[w-s’l[:i=l,...,n}=8 

and, since w E conv{s’, . . . , So}, this implies that w is a vertex of 
conv{s’, . . . , So}. q 

A sequence {Sk} for which there exists a subsequence {Sk”} satisfying (6) is said 
to be weakZy exhaustive and a subdivision process such that any infinite nested 
sequence generated by it is weakly exhaustive is called a weakly exhaustive 
process. Thus, Theorem 2 says that a subdivision process is weakly exhaustive if 
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every infinite nested sequence that it generates involves infinitely many bisections. 
It turns out that for many branch and bound procedures of global optimization, 

weak exhaustiveness of the subdivision process is sufficient to guarantee the 
convergence. 

4. Applications 

A global optimization algorithm usually alternates between two phases: a Zocul 
phase in which one seeks to improve the current best solution by using relatively 
inexpensive local methods, and a global phase in which more expensive gZobaZ 
methods are called for to test the current best solution for global optimality and if 
the test fails, to find a better feasible solution. As shown in [lo] (cf. also [5]), for a 
wide class of global optimization problems including concave minimization, 
reverse convex programming, d.c. programming and even Lipschitz and continu- 
ous optimization problems, the global phase reduces to solving a problem of the 
following form: 

(DC) Given in R” a polytope D and a compact convex set C, check whether 
D C C, and if not, find a point of DX. 

For example, for the problem of globally minimizing a concave function f(x) 
over a polytope D, the global phase amounts to solving a problem (DC) with D 
the given polytope and C = {f(x) 2 f(~‘)}, w h ere x0 is the current best solution to 
be tested for global optimality or transcended. 

I. CONICAL ALGORITHMS 

Assume that 0 is a vertex of the polytope D and there is an (a - 1)-simplex So 
such that: 0 @ aff So, conv{O, So} C C, while D C con So (conv A denotes the 
convex hull of A, con A denotes the cone generated by A). These are mild 
assumptions which usually can be made to hold after some simple manipulations. 

A conical algorithm for solving (DC) can be outlined as follows ([8], cf. also 
PII: 

(To simplify the language by “C-extension of x” we mean the intersection of 
the boundary dC of C with the ray from 0 through x, for x # 0) 

1) Let .??jo = A0 = {So}. Set k = 0. 
2) For each S = [s’, . . . , So] E 9k compute the C-extensions .z’ = f+’ of si 

(i=l,..., n) and solve the linear program 

LP(S) max $S(x) s.t. x E D fl con S 

where +S(x) is the linear function such that the hyperplane through z’, . . . , zn is 
described by the equation +S(x) = 1. 

(LP(S) amounts to maximizing ZZAj/@ s.t. ZA$ E D, Ai Z- 0 Vi). 
Let x(S), p(S) denote an optimal solution and the optimal value of LP(S). If 
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for some S, x(S) @ C, then terminate; otherwise, X(S) E C for all S E Pk, then go 
to 3). 

3) In ~6!~ delete all S E Pk such that p(S) 5 1. Let 6?& be the collection of 
remaining simplices. If %k = 0 then terminate: D C C. Otherwise, go to 4). 

4) Select Si E argmax{ p(S) : S E Sk} and subdivide Sk with respect to some 
point wk E Sk. 

5) In Sk replace Sk by its partition Pk+l and let Ak+i be the resulting collection 
of simplices. Set k + k + 1 and return to 1). 

Clearly the simplicial subdivision process performed on S0 induces a conical 
subdivision process on con S0 1 D (hence the name “conical algorithm”). 

Convergence and efficiency of the above algorithm depend upon the subdivi- 
sion strategy, i.e. the concrete rule for choosing the subdivision point wk in Step 
4. 

It can be proved (cf. [7]) that if each subdivision is a bisection (i.e. if always 
wk = midpoint of a longest edge of Sk), then convergence is guaranteed in the 
following sense: 

If D\C # fl or if D C int C then the algorithm terminates after finitely many steps 
(yielding a point of D\C or establishing that D C C, respectively). 

Unfortunately, as evidenced by computational experiments, convergence with 
the bisection process is very slow. On the other hand, if we always choose 

k Jqkzm :z intersection of the ray from 0 through x(Sk) with Sk, then convergence 
is not guaranteed (jamming is possible) but in many cases the algorithm works 
quite well. Thus, there is some conflict between convergence and efficiency, as far 
as the subdivision strategy is concerned. 

Following [8] (cf. also [5]) we shall refer to a subdivision process in which 
wk = mk Vk as an m-subdivision process. A subdivision process is said to be 
normaZ if every infinite nested sequence (Sk, k E I} generated by this process 
satisfies 

lim p(Sk) = l(k+ co, k E F) . (8) 

It has been proved in [5] that convergence (in the same sense as above) is 
guaranteed when the subdivision process is normal (it is easily seen that the 
normality condition defined here is in fact equivalent to that given in [5]). Using 
this result from [5] and Theorem 2 of Section 3 we now show that the mentioned 
conflict can be resolved by “normalizing” the ti-subdivision process, i.e. by 
constructing a normal subdivision process which does not differ much from the 
w-subdivision process. 

Denote by r(S) the generation index of S, which is computed by setting 
T($) .= 1 and r(S’) = r(S) + 1 whenever S’ is a “son” of S. Select a natural N 
(typically N 2 5) and a sequence ak & 0. 

NORMALIZED W-SUBDIVISION (NuS) RULE. If r(Sk) is a multiple of N and 
p(Sk) > 1 + cam then perform a bisection of Sk; otherwise, divide Sk with respect to 
wk = wk. 
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THEOREM 3. The NmS Rule generates a normal subdivision process. 
Proof. Consider any infinite nested sequence {Sk, k E I} generated by the 

algorithm. Let A = {k E I : Sk is bisected}. If A is finite then (8) is obvious, since 
P(S~) s 1 + ak for all sufficiently large k such that T(S~) is a multiple of N. 
Suppose now that A is infinite. Let qk, uk denote the intersections of the ray from 
0 through .x(Sk) with [zkl, . . . . ,zkfl] and dC, respectively. Since p(Sk) = ]]x(S~)]] / 
i i qkii, ‘@k) E bky qkl? and ]] qk]] is bounded below, (8) will be proved if we show 
that 

lim]]qk-uk]]=O (k-+m, kEI’\A). 

In view of Theorem 2 and the compactness of S0 and dC, without loss of 
generality we can assume that, as k+ CC (k E I\A): 

ski+si(i = 1, . . . , n), wk-+ s1 E vert[sl, . . . , So] , 
zk’+z’=~~s’(i=l,...,~). 

NOW, observe that if T(X) denotes the C-extension of x E S0 then there is a 
constant T > 0 such that ]]T(X’) -x(x”)]] 5 n]].r’ - x”]] for all x’, X”E SO. Indeed, 
clearly T(X) = x/p(x), where 

p(.r)=inf{A?O:xEAC) 
is the gauge of C. Since p(x) is convex, hence Lipschitz over S,,, and p(x) is 
bounded below over SO, it easily follows that r(x) is also Lipschitz over SO. 
Therefore, 

11 uk - zkljl = [I Tr(wk) - 7r(sk1)[/ 

sTjl[wk - sklll+O (k+y kElY\A). (9) 

On the other hand, obviously qk = cxk a~’ for some CY~ 2 1, so if q = lim qk then 
q = cd for some a 2 1. But from qk E [zkl,. . . , zkn] we have q E 
conv(z’, . . . , Y}, i.e. q = zi &,zi = .Xi &6&s’, hence as1 = Xi &@s and setting 
Pi = &Oila, we obtain 

with & 2 0, zi pi = 1 (this is because 0 @ aff S0 implies that s1 E S0 only if 
Ei pi = 1). Since s1 Evert[sl, . . . , sfl] we must then have pi = 0 for i $ 
Z : = {i : s’ = sl}, i.e. zicl pi = 1. Noting that ei 2 1 Vi and 0i = e1 (i E Z) this yields 
& = 0 (i @ Z) and ziel pi = x:=1 &19~/a = 81/a = 1, i.e. a = el, hence q = 611s1 = zl. 
Thus, 

j~qk-zkl~~+q-zl[/=O(k+~,kG\A). (9 

From (9) and (10) we conclude, as was to be proved, 

~~qk-~k~~~~~qk-zkl~~+~~zkl-~k~~~O (k+m,kEr\A). q 

Thus, to ensure the convergence of Algorithm 1 we need only weakly exhaustive 
subdivision processes. 
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REMARKS. (i) In [B] an exhaustive process was proposed that could be derived 
from Theorem 1, namely: 

If T(S~) is a multiple of N or the p-eccentricity condition is not satisfied 
(pe(v’%2,1) b em ’ g a user supplied parameter) then perform a bisection of Sk. 
Otherwise, divide Sk with respect to r~’ = wk. 

Since checking the p-eccentricity condition may be time consuming (and 
besides, this condition is likely to hold in most cases when p is very close to l), in 
practice this rule is often used in the following loose form: 

Choose wk = wk as long as the algorithm proceeds normally and use a bisection 
only when the algorithm is slowing down. 

Although this loose rule does not guarantee normality, computational experi- 
ments have shown that it works quite well [4] (any way much better than the pure 
bisection rule). In light of the above results, this loose rule can now be given a 
precise formulation: 

Choose wk = mk as long as &Sk) Z 1 + CX~ and use a bisection only when 
id’%) > 1 + %* (In fact, the speed of convergence of the algorithm can be 
evaluated from the speed of convergence of the quantity p(Sk) - 1 to zero). 

Since this is a special realization of the NwS Rule, normality (and hence, 
convergence) is assured. 

(ii) The above algorithm still works when C is unbounded, provided D remains 
bounded (then we agree that 1 /ei = 0 if 0i = +QJ). When D itself is unbounded, an 
extension of the algorithm requiring an exhaustive subdivision has been proposed 
in [lo]. 

II. SIMPLICIAL ALGORITHMS 

The rationale for using conical subdivision is that if the set D\C is nonempty, at 
least one point of it lies on the boundary of D, so that the search for such a point 
can be concentrated on this boundary. However , there are instances where other 
subdivision methods might be preferred. 

AS an example consider the problem (DC) when C has the form 
C = {(y, z) E Rp x Rq : g(y) 5 h(z)} , 

where p + q = n, g : Rp -+ R is a convex function, while h : Rq + R is an affine 
function. Since only the y-variables enter the problem in a nonlinear way, it is 
more convenient, when solving the problem by branch and bound, to branch with 
respect to the y-variables. Let S0 be a p-simplex in Y = Rp which contains the 
projection of D on Y. Then the problem is to find a pointy E S0 for which there is 
z satisfying ( y, z) E D and g(y) - h(z) > 0. 

A simplicial algorithm for this problem is similar to the conical algorithm, but 
the space is partitioned into subsets of the form S X Rq, where S = [$I, . . . , sp+‘] 
is a subsimplex of SO, and for each such subset we consider the linear program: 

LP(S) max [Dig(si) - h(z)] 

s.t. (Z@, z) E D, &ii = 1, Ai 2 0 Vi . 
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If -y(s) is the optimal value of LP(,S), then ,S is deleted if y(s) Z 0, while s is 
chosen for branching if it has maximal y(s) among all simplices still of interest at 
the given stage. The algorithm terminates when some LP(s) has an optimal 
solution (A, z) such that g(XA$) - /z(z) > 0 (then a solution of (DC) is obtained) 
or when no simplex remains for consideration (then D C C). 

It can be proved that the algorithm will converge if the subdivision process is 
normul in the following sense: for every infinite nested sequence {Sk, k E r} 
generated by the process, such that (A’, z’) is a basic optimal solution of LP(sk) 
and yk = ZAfski, where ski are the vertices of Sk, we have 

7 AFg(ski),.-g(yk) --+O (k-m, kEr). 1 
Just as with the conical algorithm, the following iVw,S rule will ensure normality, 
hence convergence, of the subdivision process (the proof is similar to that of 
Theorem 3) : 

Select a natural N and a sequence CY~ 4 0. 

Zf r(Sk) is a multiple of N and zAfg(ski) - g( yk) > CY~ then bisect Sk; otherwise, 
divide Sk with respect to yk. 

5. Separable Problems and Rectangular Algorithms 

For certain problems rectangular subdivisions may be more appropriate than 
conical or simplicial subdivisions. 

A rectangle IV = [r, s] = {X : r 5 x 5 s} is the Cartesian product of n intervals 
Mj = [rj, sj]. What makes the interest of rectangular subdivisions for our purpose 
is the fact that for a separable function f(x) = X6(xj), there is on each rectangle 
M = [r, s] a unique affine function +M(~) that agrees with f(x) at the vertices of M 
(namely the function 4M(~) = Z+Mj(xj), where +Mj(t) is the affine function of one 
variable that agrees with 4(t) at the endpoints of [rj, sj]). 

Given a point w E M and a nonempty set J C { 1,2, . . . , n} we can consider the 
subdivision of the rectangle M into subrectangles of the form II;+ Pj, where 

Pj=[rj,sj] ifj@Jand 
Pj = [rj, wj] or [wj, sj] if j E J. 

This subdivision will be referred to as a subdivision via (w, J). Below we shall 
only consider rectangular subdivisions of this type. 

Let MI 1 Mz 1. * * 1 Mk 1. * * be an infinite nested sequence of rectangles such 
that Mk+I is obtained from Mk by a subdivision via (wk, Jk). A nice property of 
rectangular subdivision processes is their weak exhaustiveness, independently of 
the &mice of the (wk, Jk). Their property is induced by the same property of 2,‘~$.‘.> 
simphcral subdivision processes in one-dimensional space. 

Denote nkj = min(]wT - rF/, [w: - $I}. 
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THEOREM 4. Zn any rectangular subdivision process, every in$nite nested se- 
quence { Mk, k E IY} satisfies 

lim max{qkj : j E Jk} = 0 (k+ m, k E r) . (111 - 

Proof. Since Jk C {l, . . . , n} there is an infinite subsequence A C lY such that 
Jk = J Vk E A. For any fixed j E J denote akj = 1s; - r;i. Either of the following 
alternatives holds: (1) there is a constant p e (0,l) such that qkj > pakj for all 
sufficiently large k f5 A; 2) there is an infinite subsequence ?jj CA such that for 
k E Fjj :Q, 5 pkakj, where pk & 0. In the first case Skj 5 (1 - ~)i&~ for h < k (h E 
A), hence qkj Z akj + 0 (k + m, k E A) ; in the second case, obviously nkj + 0 
(k+ m, k l Aj). Thus, for each j f5 J there is an infinite sequence Aj C A such that 
nkj+O (k-m, kEAj). If J={jl,. . . , jp}, then we can assume AjpC...CAjl, 
so that lim qkj = 0 (k *a, k C AjJ for all j E J, hence (11). q 

Now we apply this result to the problem (DC) when D is a polytope contained in 
a rectangle [c, d] = {x E R” : c 5 x S d}, 

and each$(t) (j=l,. . . , n) is a concave function of one variable in the interval 
LCj, ‘jl* 

For any subrectangle M = [r, ~1 C [c, d], it is easily seen that the affine function 
4&x) that agrees with f(x) at the vertices of M is an underestimator of f(x) on 
M: 
C&(X) Sf(x) Vx E M, hence 

min{f(x):xEMnD}Zmin{f&(x):xEMnD}. 

With this in mind, a branch and bound algorithm for solving the problem under 
consideration can be outlined as follows. 

1) Let 9,, = &, L {[c, d]}. Set k = 0. 
2) For each M E ??k, M = [r, s] solve the linear program 

LP(M) min &(x) s.t. x E M fl D , 

obtaining the optimal value p(M) and an optimal solution w(M) of it. If for some 
M, f(w(M)) < y, then terminate (m(M) E D\C). Otherwise, go to 3). 

3) In Jlk delete all M with /3(M) 2 7. Let .9& be the collection of remaining 
rectangles. If 9Zk = 0 then terminate: D C C. Otherwise, go to 4). 

4) Select Mk C argmin{ /3(M) : ME LY&}. Let w(M~) = wk, c$~(x) = +Mk(x) = 
Z+kj(xj). Select an index set Jk C { 1, . . . , n} containing an element jk satisfying 

jk E argm? l&CwF) - 4kjCwFll . (121 

Subdivide Mk via (6~ ‘, Jk), obtaining a partition pk+l of Mk. 
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5) In .%!k replace J4k by PPk+ r . Let Ak+r be the resulting collection. Set 
Ic+-k + 1 and return to 1). 

THEOREM 5. For any in$nite nested sequence {Mk, k E r} generated by the 
algorithm we have 

b jf(wk) - $k(wk)[ = 0 (k+m, k E I?). (13) 

Proofi By Theorem 4, without loss of generality we can assume that 

vkl = d - rF+0 (k-+m, kElY’); lEargm,axjJ(~T)- $kj(~;)j. (14) 

From the continuity offI we have ifI -fr(rf)/+O. But tif = czkI$ + (l- 
akl)rf with akI = qklibf - rth hence $kl(wF) = akl+kl(sf) + t1 - akl)+kl(r~) = 

ffklfl(si) -I- c1 - akdh(rt). Therefore? \#k&+.fh-~? = akl/.fdst) - 

fr(rF)l*O because either st - rf+0 or akI-+O. Consequently, 

~.fl~~;~ - +kl@$i s i.fl@:) - .fl@:)l + if&-t) - ~kl~w%=o~ 

Since jk = 1 it then follows from (12) that 

\J(mT) - ~kj(w~)l+-OVj= 1,. . . , rr 

and this implies (13). 

THEOREM 6. If D\C is nonempty then the above algorithm finds a point of D\C 
after jinitely many iterations. 

Proof. Suppose that the algorithm is infinite. Then it generates an infinite 
nested sequence { &Ik, k E I?}. By Theorem 5, we have (13). Since f(u ‘) 2 y, 
while +k(~k) = p(Mk), it follows that 

lim p(Mk) = y(k-+ a) . (151 

(the monotonicity of the bounding: @(iVk) 2 j3(&Ih) Vk > h can easily be derived 
from the concavity of f(x)). Now, if any point x G D belongs to a rectangle M 
which is deleted at some iteration k then f(x) Z- p(M) 2 7. On the other hand, if 
at every iteration k, x belongs to some cone M in Sk, then f(x) 2 p(M) 2 p(Mk), 
hence again f(x) 2 7, by letting k -+ m. Thus D C C, completing the proof. 0 

REMARKS. (i) Usually, the set Jk is chosen so that Jk C {j: J(uk) - $ki(uk) > 
O}. The above subdivision with Jk = { jk} was proposed in [l]. Of course, the 
possibility of taking a Jk larger than { jk} adds more flexibility to the method. 

(ii) Sometimes we may be interested in having a stronger condition than (11), 
namely: 

6kjE=sTk-r;k+0 (k+m, kEA) 

(exhaustiveness). It is not hard to see that the following choice of the subdivision 
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point w’ will ensure this property (N 2 1 and 7 E (0,l) are user supplied 
parameters; T(M) is the generation index of M): 

(*) If T(M) is a multiple of N and max{]ti:k - $, 1~;~ - $J} > +Tk - rTk] 
then choose w’ so that w; = UT for j # jk and w;k = ;(s:~ + r;k); otherwise, 
choose wk = 6~~. 

Indeed, let {Mk, k E r} be any infinite nested sequence generated by this rule 
and consider any infinite sequence AC r. Without loss of generality we can 
assume that jk = j (constant) for all k E A. Let Ai denote the sequence of all k E A 
for which the first alternative mentioned in the rule occurs. Since each time this 
alternative occurs the length of the segment [$, $1 decreases by a factor of n, it 
is clear that this length tends to 0 as k + m (k E A), provided A1 is infinite. But if 
Ai is finite, i.e. if there is kl such that the first alternative never occurs for k 2 kl 
(kEA), then max{]wT-rt], ]w:-ST]} 5 n],s;-~;] for infinitely many k2kl 
(k E A), hence again S: - r; -+ 0. 

(iii) When each J.(x~) is concave quadratic, it can be proved that there exist 
constants ai (j = 1, . . . , n) satisfying ]&(6.~:) - +kj(~T)/ s aj(.$ - r;)2 (see [6]). 
Based on this property, in [6] an exhaustive subdivision was proposed such that 

Jk = {jkh 

jk E argmax aj($ - rF)2 , 
j 

and w;~ = $ (s;~ + r;J. The drawback of this subdivision is its nonadaptive 
character, in contrast with the subdivision (*) which basically depends on 6~~. 
From the above development it appears that for the type of algorithms discussed 
in [6] the most efficient subdivision should be the w-subdivision defined by (12). 
This remark can be illustrated by the following example (cf. [6]): 

minimize f(x) = - ; (2~; + 8.x:) subject to 

~i+~~SlO,xi+5x~S22, -3x1+2x*52, 

-xl-4x~~-4,xl-2x~S4. 

With the subdivision method used in [6] and starting from M0 = {x : 0 S x1 5 8, 
05x254}, x0 =(8,2), f(xO) = -80 seven iterations are needed to identify the 
global optimal solution x1 = 7, x2 = 3, whereas with the m-subdivision only two 
iterations would suffice. 
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